Logo

User Guide

  • 1. Introduction
  • 2. Installation
  • 3. Run FitSNAP
  • 4. Linear Models
  • 5. PyTorch Models

Programmer Guide

  • 1. Contributing
  • 2. Executable
  • 3. Library
  • 4. Tests
FitSNAP
  • »
  • FitSNAP Documentation
  • View page source

FitSNAP Documentation

FitSNAP is a molecular machine learning package for LAMMPS.

Wanna get started ASAP? Check out our Colab Python notebook tutorial

GitHub repo: https://github.com/FitSNAP/FitSNAP

Indices and tables

  • Index

  • Module Index

  • Search Page


User Guide

  • 1. Introduction
    • 1.1. Overview of FitSNAP
    • 1.2. FitSNAP Components
  • 2. Installation
    • 2.1. LAMMPS Installation
    • 2.2. FitSNAP Installation
  • 3. Run FitSNAP
    • 3.1. Command-line options
    • 3.2. Input files
    • 3.3. FitSNAP Outputs
    • 3.4. Running as library
  • 4. Linear Models
    • 4.1. Outputs
    • 4.2. Uncertainty Quantification (UQ)
    • 4.3. In development UQ solvers
  • 5. PyTorch Models
    • 5.1. Fitting Neural Network Potentials
    • 5.2. Loss Function
    • 5.3. Outputs and Error Calculation
    • 5.4. Training Performance

Programmer Guide

  • 1. Contributing
    • 1.1. Style Guide
    • 1.2. Documenting
  • 2. Executable
    • 2.1. Data & configuration extraction
    • 2.2. Modifying the output dataframe
    • 2.3. Adding new input file keywords
    • 2.4. Adding your own Calculator
    • 2.5. Adding your own Model/Solver
  • 3. Library
    • 3.1. FitSnap
    • 3.2. Scraper
    • 3.3. Calculator
    • 3.4. Solver
    • 3.5. lib/
    • 3.6. tools/
  • 4. Tests
Next

© Copyright 2022, Sandia Corporation.

Built with Sphinx using a theme provided by Read the Docs.