Quick Instructions ================== Module names may be changed depending on your system, but the general procedure is the same. Load modules:: module purge module load gcc module load cmake module load openmpi module load intel # Sometimes this helps mpi4py work Create & activate conda environment with dependencies:: conda create --name fitsnap python=3.10 conda activate fitsnap python -m pip install numpy scipy scikit-learn virtualenv psutil pandas tabulate mpi4py Cython # For nonlinear fitting: python -m pip install torch # For fitting ACE: python -m pip install sympy pyyaml # For contributing to docs: python -m pip install sphinx sphinx_rtd_theme sphinxcontrib-napoleon Now we need to install LAMMPS. **NOTE:** If you want to use ACE, please see `LAMMPS PACE install `__ Set the following environment variables:: LAMMPS_DIR=/path/to/where/you/want/lammps # LAMMPS code will be in $LAMMPS_DIR FITSNAP_DIR=/path/to/where/you/want/FitSNAP # FitSNAP code will be in $FitSNAP_DIR Get & build LAMMPS with Python library:: git clone https://github.com/lammps/lammps $LAMMPS_DIR mkdir $LAMMPS_DIR/build-fitsnap cd $LAMMPS_DIR/build-fitsnap cmake ../cmake -DLAMMPS_EXCEPTIONS=yes \ -DBUILD_SHARED_LIBS=yes \ -DMLIAP_ENABLE_PYTHON=yes \ -DPKG_PYTHON=yes \ -DPKG_ML-SNAP=yes \ -DPKG_ML-IAP=yes \ -DPKG_ML-PACE=yes \ -DPKG_SPIN=yes \ -DPYTHON_EXECUTABLE:FILEPATH=`which python` make make install-python Get & prepare FitSNAP:: git clone https://github.com/FitSNAP/FitSNAP $FITSNAP_DIR export PYTHONPATH=$FITSNAP_DIR:$PYTHONPATH # So you can run FitSNAP as executable Fit a neural network for tantalum:: cd $FITSNAP_DIR/examples/Ta_PyTorch_NN mpirun -np 2 python -m fitsnap3 Ta-example.in --overwrite Run high-performance MD with this neural network potential:: SITE_PACKAGES_DIR=`python -c "import site; print(site.getsitepackages()[0])"` export PYTHONPATH=${SITE_PACKAGES_DIR}:$PYTHONPATH # So that ML-IAP package can find torch for MD cd MD mpirun -np 4 ${LAMMPS_DIR}/fitsnap-build/lmp < in.run